Fatty acids profile of mammary gland and milk of *Palmera* and *Majorera* goat breeds subjected to weight loss

Mariana Palma, Susana P. Alves, Lorenzo Hernández-Castellano Juan Capote, Noemí Castro, Anastasio Argüello, Manolis Matzapetakis, Rui J. B. Bessa, André M. de Almeida

4th DairyCare Conference. Lisbon, Portugal. 13th – 14th October 2016. COST Action 1308
Goats

- Historic, economic and nutritional importance in tropical and sub-tropical environments

- Valuable nutritional supply in developing countries
 - important sources of animal protein

- Recent increase of interest for their milk and dairy products
 - substitute of cow milk
 - gourmet products
Seasonal Weight Loss

Tropical, Sub-Tropical and Mediterranean Climate:

Rainy season
- abundant pastures

Dry season
- poor and scarce pastures

Seasonal Weight Loss

Tropical, Sub-Tropical and Mediterranean Climate:

Dry season
poor and scarce pastures

Animals may lose up to 30% of their live weight:

Seasonal Weight Loss (SWL)
Seasonal Weight Loss

Tropical, Sub-Tropical and Mediterranean Climate:

Animals may lose up to 30% of their live weight:

Seasonal Weight Loss (SWL)

Major limitation in ruminant production in drought-prone regions

Dry season
poor and scarce pastures

Seasonal Weight Loss

- Some **breeds** show higher adaptation to dry environments and **resistance to SWL effects**.

 Interest for breed selection

 Improvement

Production yields and quality
- milk
- meat
- wool/hair

Disease management

Animal welfare

Social and economic importance
Canaries Archipelago

- Atlantic Ocean, West of North Africa
- Subtropical Climate Zone
Canaries Archipelago

Palmera breed
- adapted to rainy climate
- low tolerance to pasture scarcity

Majorera breed
- adapted to arid climate
- high tolerance to pasture scarcity

Lérias et al. 2013. Trop Anim Health Prod. 45: 1731-1736
Aim

• Milk fat:
 • major influence in organoleptic qualities
 • more susceptible to environmental and physiological conditions

• Profile the fatty acids composition in mammary gland and milk, of Majorera and Palmera breeds

• Study the influence of feed-restriction in these profiles
Methodology

Sample collection

Palmera breed lactation ♀
N = 10

CTRL Group (N = 6)

Restricted Feeding Group: 15-20% initial live weight (N = 4)

Majorera breed lactation ♀
N = 9

CTRL Group (N = 4)

Restricted Feeding Group: 15-20% initial live weight (N = 5)

23 days

Regular:
- weight measurement
- milking
- milk yield recording

• Mammary gland biopsy
• Milk
I. Mammary gland

- extraction – Folch Method
- conversion to fatty acid methyl esters (FAME)

I. Milk

- liophilization
- conversion to fatty acid methyl esters (FAME)

II. Gas Chromatography

- Flame-ionization detector
- Fused silica capillary column

III. FAME Identification

- Comparison with commercial standard mixtures
- Electron impact mass spectrometry

IV. Statistical Analysis

- ProcMIXED, SAS
Results and Discussion

Mammary gland: control vs restricted-fed groups

Palmera breed
- oleic acid (18:1 cis-9)
- palmitic acid (16:0)
- caprylic acid (8:0)
- capric acid (10:0)
- lauric acid (12:0)

Majorera breed
- caprylic acid (8:0)
- capric acid (10:0)
- lauric acid (12:0)

(Significant differences $p < 0.05$)
Results and Discussion

Mammary gland: control vs restricted-fed groups

Palmera breed

- Oleic acid (18:1 cis-9)

Majorera breed

- Palmitic acid (16:0)
- Caprylic acid (8:0)
- Capric acid (10:0)
- Lauric acid (12:0)

(Significant differences $p < 0.05$)
Results and Discussion

Mammary gland: control vs restricted-fed groups

Palmera breed

- Oleic acid (18:1 cis-9)
- Palmitic acid (16:0)
- Caprylic acid (8:0)
- Capric acid (10:0)
- Lauric acid (12:0)

Majorera breed

- Oleic acid (18:1 cis-9)
- Caprylic acid (8:0)
- Capric acid (10:0)
- Lauric acid (12:0)

- *Palmera* more susceptible to feed restriction
- Decrease of short-chain FA due to lipid mobilization from adipose tissues

(Significant differences $p < 0.05$)
Results and Discussion

Mammary gland: interaction breed x feed-restriction

Palmera breed

Majorera breed

- Oleic acid (18:1 cis-9)
- Palmitic acid (16:0)

(Significant differences $p < 0.05$)
Results and Discussion

Mammary gland: interaction breed x feed-restriction

Palmera breed

| oleic acid (18:1 cis-9) | NS |

Majorera breed

| palmitic acid (16:0) | NS |

(Significant differences $p < 0.05$)
Results and Discussion

Mammary gland: interaction breed x feed-restriction

Palmera breed
- Oleic acid (18:1 cis-9)
- Palmitic acid (16:0)
- ~ 60%

Majorera breed
- NS
- NS

(Significant differences $p < 0.05$)
Results and Discussion

Mammary gland: interaction breed x feed-restriction

- Breed influences the response to feed-restriction
- *Palmera* more susceptible to feed restriction
- Variation due to fat mobilization

Palmera breed
- Oleic acid (18:1 cis-9)
- Palmitic acid (16:0)

~ 60%

Majorera breed
- NS

(Significant differences $p < 0.05$)
Results and Discussion

Milk: control vs restricted-fed groups

Palmera breed
- oleic acid (18:1 cis-9)
- palmitic acid (16:0)
- myristic acid (14:0)
- capric acid (10:0)

Majorera breed
- oleic acid (18:1 cis-9)
- palmitic acid (16:0)
- myristic acid (14:0)
- capric acid (10:0)

- Variation due to fat mobilization and negative energy balance

(Significant differences $p < 0.05$)
Results and Discussion

Milk: multivariate analysis - PCA

- Clustering by treatment
- No clustering by breed

Loadings (VP’s):
- C18:1 cis-9
- C10:0
- C15:0
Both statistical analysis presented similar results

Variation due to fat mobilization and negative energy balance
Results and Discussion

Milk: interaction breed x feed-restriction

Palmera breed
- margaric acid (17:0)
- cis-9-heptadecenoic acid (17:1 cis-9)

Majorera breed
- margaric acid (17:0)
- cis-9-heptadecenoic acid (17:1 cis-9)

(Significant differences $p < 0.05$)
Results and Discussion

Milk: interaction breed x feed-restriction

Palmera breed
- margaric acid (17:0)
- cis-9-heptadecenoic acid (17:1 cis-9)

Majorera breed
- margaric acid (17:0)
- cis-9-heptadecenoic acid (17:1 cis-9)

< 2 %

(Significant differences $p < 0.05$)
Milk: interaction breed x feed-restriction

- **Palmera breed**
 - margaric acid (17:0)
 - cis-9-heptadecenoic acid (17:1 cis-9)

- **Majorera breed**
 - margaric acid (17:0)
 - cis-9-heptadecenoic acid (17:1 cis-9)

- Minor importance in the total FA milk composition

(Significant differences $p < 0.05$)
Main outcomes

✓ Interaction of breed and feed-restriction in mammary gland

 • *Majorera* breed seems to have higher tolerance to feed-restriction

 • More suitable for breed selection - milk production

✓ *Palmera* breed uses fat storage to cope with feed-restriction

✓ *Milk* had significant responses to feed restriction in both breeds

 • Product optimization (fat profile, flavour, …)
Acknowledgments

Working teams & Participant Institutions:

- Manolis Matzapetakis
- André Martinho de Almeida
- Joana Lérias
- José Salvado
- BioMolecular NMR Group

- Lorenzo Hernandez-Castellano
- Noemi Castro
- Anastacio Arguello
- Juan Capote
- Susana P. Alves
- Rui J. B. Bessa

Funding:

- PhD Grant SFRH/BD/85391/2012
- Project PTDC/CVT/116499/2010

NMR Spectrometers are part of The National NMR Facility (RECI/BBB-BQB/0230/2012)
Thanks!

questions...

mpalma@itqb.unl.pt